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Quantum-field-theoretic descriptions of interacting condensed bosons have suffered from the lack of self-
consistent approximation schemes satisfying Goldstone’s theorem and dynamical conservation laws simulta-
neously. We present a procedure to construct such approximations systematically by using either an exact
relation for the interaction energy or the Hugenholtz-Pines relation to express the thermodynamic potential in
a Luttinger-Ward form. Inspection of the self-consistent perturbation expansion up to the third order with
respect to the interaction shows that the two relations yield a unique identical result at each order, reproducing
the conserving-gapless mean-field theory �T. Kita, J. Phys. Soc. Jpn. 74, 1891 �2005�� as the lowest-order
approximation. The uniqueness implies that the series becomes exact when infinite terms are retained. We also
derive useful expressions for the entropy and superfluid density in terms of Green’s function and a set of
real-time dynamical equations to describe thermalization of the condensate.
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I. INTRODUCTION

Broken symmetry and self-consistency are among the
most fundamental concepts in modern theoretical physics.
The former brings a drastic change in the system with the
appearances of the order parameter1,2 and the corresponding
Nambu-Goldstone boson.2–4 The order parameter has to be
determined self-consistently together with quasiparticles re-
sponsible for the excitation. Thus, the latter concept is also
essential for describing broken symmetry phases.

Self-consistency plays crucial roles even in normal sys-
tems as exemplified in the Landau theory of Fermi liquids5,6

where an external perturbation produces a self-consistent
molecular field to yield an enhanced response in some cases.
It is also adopted commonly in various practical approxima-
tion schemes such as the Hartree-Fock theory and the
density-functional theory;7 with some infinite series incorpo-
rated in terms of the latter, self-consistent approximations
can be far more effective than the simple perturbation expan-
sion. It is worth pointing out that the Landau theory of Fermi
liquids has been justified microscopically with the self-
consistent quantum field theory,8 which in turn enabled Leg-
gett to extend the Landau theory to superfluid Fermi liquids.9

Among those self-consistent approximations is Baym’s
�-derivable approximation with a unique property of obey-
ing various dynamical conservation laws automatically.10

This is certainly a character indispensable for describing
nonequilibrium phenomena but not met by the simple pertur-
bation expansion. Indeed, the �-derivable approximation
seems the only systematic microscopic scheme within the
quantum field theory which enables us to study equilibrium
and nonequilibrium phenomena on an equal footing. It in-
cludes the Hartree-Fock theory and the Bardeen-Cooper-
Schrieffer �BCS� theory of superconductivity as notable ex-
amples. Moreover, the Boltzmann equation can be derived as
a special case of the �-derivable approximation.10,11

The key functional �=��G� above was introduced by
Luttinger and Ward12 as part of the exact equilibrium ther-
modynamic potential for the normal state in terms of the

Matsubara Green’s function G. Based on a self-consistent
perturbation expansion, the expression also provides a sys-
tematic approximation scheme with the desirable property of
including the exact theory as a limit.13 Indeed, Luttinger13

subsequently used the Luttinger-Ward functional to obtain
some general results on normal Fermi systems such as the
Fermi-surface sum rule anticipated by Landau.5 Note that
nonequilibrium systems can be handled with essentially the
same techniques as equilibrium cases by a mere change from
the imaginary-time Matsubara contour into the real-time
Keldysh contour.14–16

Thus, it would be useful to have a practical �-derivable
approximation of Bose-Einstein condensates �BECs� with
broken U�1� symmetry, where quite a few dynamical experi-
ments have been carried out17–19 since the realization of the
Bose-Einstein condensation with a trapped atomic gas in
1995.20 Another key ingredient here is the presence of a gap-
less excitation in the long wave-length limit, as first proved
by Hugenholtz and Pines.21 This branch, which corresponds
to the Bogoliubov mode in the weak-coupling regime,22 can
be identified now as the Nambu-Goldstone boson4 of the
spontaneously broken U�1� symmetry. The importance of the
two features, i.e. “conserving” and “gapless,” for describing
interacting condensed bosons was already pointed out by
Hohenberg and Martin in 1965 �Ref. 23� and also empha-
sized by Griffin soon after the realization of the Bose-
Einstein condensation in the trapped atomic gases.24 Despite
considerable efforts, however, few systematic approximation
schemes for BEC have been known to date which satisfy the
two fundamental properties simultaneously.

A notable exception may be the dielectric formalism.25–28

It is designed specifically to describe another important fea-
ture of interacting condensed bosons that the single-particle
spectrum and the two-particle density spectrum coincide as
first shown by Gavoret and Nozière.29 By incorporating local
number conservation additionally, it has provided the gapless
spectrum of a weakly interacting homogeneous Bose gas be-
yond the leading order.27 However, a generalization of the
formalism to inhomogeneous or nonequilibrium situations
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seems not straightforward when experiments on atomic gases
are carried out with trap potentials dynamically.17–19

Now, the main purpose of the present paper is to develop
a self-consistent perturbation expansion for BEC satisfying
Goldstone’s theorem4 and dynamical conservation laws si-
multaneously. This will be carried out by extending the
normal-state Luttinger-Ward functional12 so as to obey a
couple of exact relations for BEC, i.e., that for the interaction
energy and the Hugenholtz-Pines relation. The two relations
will be shown to yield a unique identical result for the func-
tional � of BEC at least up to the third order in the self-
consistent perturbation expansion. The fact indicates that the
series becomes exact when infinite terms are retained. It also
turns out that the expansion reproduces the conserving-
gapless mean-field theory developed earlier with a subtrac-
tion procedure30,31 as the lowest-order approximation. The
formulation will be carried out in the coordinate space so
that it is applicable to inhomogeneous systems such as those
under trap potentials and with vortices. Using the Keldysh
Green’s functions, we will also extend it to describe nonequi-
librium behaviors. Those are subjects with many unresolved
issues19 which cannot be treated by other theoretical methods
for BEC such as the variational approach32,33 and the Monte
Carlo method.34 The whole contents here are relevant to
single-particle properties, and we are planning to discuss
two-particle properties in the near future.

The formalism will find a wide range of applications on
BEC. They include: �i� clarifying molecular field effects in
condensed Bose systems corresponding to the Landau theory
of Fermi liquids; �ii� nonequilibrium phenomena of BEC
such as thermalization with full account of the quasiparticle
collisions; �iii� microscopic derivation of Landau two-fluid
equations with definite interaction and temperature depen-
dences of the viscosity coefficient, etc. It will also be helpful
to construct a practical functional for BEC within the
density-functional formalism, which still seems absent.

It is worth pointing out finally that the Luttinger-Ward
functional is known as the “two-particle irreducible �2PI�
action” in the relativistic quantum-field theory,35,36 and the
difficulties mentioned above are also encountered in describ-
ing its broken symmetry phases such as that of the �4

theory.37,38 Thus, the present issue is relevant to a wide range
of theoretical physics beyond BEC.

This paper is organized as follows. Section II summarizes
exact results on an interacting Bose system, including an
expression of the thermodynamic potential for BEC with �.
Section III presents a definite procedure to construct �. It is
subsequently used to obtain a first few series of the self-
consistent perturbation expansion explicitly. Section IV de-
rives formally exact expressions of entropy and superfluid
density in terms of Green’s function, which may also be
useful for their approximate evaluations. Section V extends
the formulation to describe nonequilibrium dynamical evolu-
tions of BEC. Section VI summarizes the paper. We put �
=kB=1 throughout with kB the Boltzmann constant.

II. EXACT RESULTS

We consider identical Bose particles with mass m and
spin 0 described by the Hamiltonian:

H = H0 + Hint, �1�

with

H0 =� d3r1�
†�r1�K1��r1� , �2a�

Hint =
1

2
� d3r� d3r��†�r��†�r��V�r − r����r����r� .

�2b�

Here �† and � are field operators satisfying the Bose com-
mutation relations, K1�− 1

2m�1
2−� with � as the chemical

potential, and V is the interaction potential with the property
V�r−r��=V�r�−r�. Though dropped here, the effect of the
trap potential can be included easily in K1.

Let us introduce the Heisenberg representation of the field
operators by8

��1� � e�1H��r1�e−�1H

�̄�1� � e�1H�†�r1�e−�1H,
�3�

with 1��r1 ,�1�, where 0	�1	T−1 with T the temperature.
We next express ��1� as a sum of the condensate wave func-
tion 
�1�����1�� and the quasiparticle field ��1� as

��1� = 
�1� + ��1�, �̄�1� = 
̄�1� + �̄�1� , �4�

with �¯ � denoting the grand-canonical average in terms of
H. Note ���1��=0 by definition.

Our Matsubara Green’s function in the 2�2 Nambu
space is defined in terms of � and �̄ by

Ĝ�1,2� � −	T�
��1�

�̄�1�
���̄�2���2����̂3

� 
 G�1,2� F�1,2�

− F̄�1,2� − Ḡ�1,2�
� , �5�

where T� denotes the “time”-ordering operator8 and �̂3 is the
third Pauli matrix. Every 2�2 matrix in the Nambu space

will be distinguished with the symbol ˆ on top of it like Ĝ.
The off-diagonal elements F�1,2�= �T���1���2�� and

F̄�1,2�= �T��̄�1��̄�2�� were introduced by Beliaev,39 which
describe the pair annihilation and creation of quasiparticles
inherent in BEC. The factor �̂3 in Eq. �5� is usually absent in

the definition of Ĝ �Refs. 23 and 24�; it brings an advantage

that poles of Ĝ directly correspond to the Bogoliubov
quasiparticles.30,31

It is easily checked that the elements of Ĝ satisfy

G��1,2�=G�r2�1 ,r1�2�, F�1,2�=F�2,1�, Ḡ�1,2�=G�2,1�,
and F̄�1,2�=F��r2�1 ,r1�2�, with superscript � denoting com-
plex conjugate. These four relations are expressed compactly

in terms of Ĝ as
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�̂3Ĝ†�1,2��̂3 = Ĝ�r2�1,r1�2�,

�̂1Ĝ��1,2��̂1 = − Ĝ�r1�2,r2�1� , �6�

where superscript † denotes Hermitian conjugate in the ma-

trix algebra. Using Ĝ−1Ĝ=1̂, one can show that Ĝ−1 also
obeys the relations of Eq. �6�.

Total particle number N is calculated by integrating

��̄�1���1�� over the whole space of the system, i.e.,

N =� d3r1�
̄�1�
�1� − G�1,1+�� , �7�

where the subscript of 1+ denotes an extra infinitesimal posi-
tive constant in the argument �1 to put the creation operator
to the left for the equal-time average.12 Equation �7� may
also be used to eliminate � in favor of N. To be explicit, we
will proceed by choosing �T ,�� as independent variables,
which will be dropped in most cases.

We summarize relevant exact results on the system below.
Those of Secs. II A and II B have been known from the late
1950s. However, they often have been proved or reviewed
only for uniform systems with different notations. We hence
provide in Appendix A detailed derivations of those results
together with that of Sec. II C for general inhomogeneous
systems so as to be compatible with definition �5� of our
Green’s function.

A. Dyson-Beliaev equation

Equation �5� satisfies the Dyson-Beliaev equation:21,39

� d3�Ĝ0
−1�1,3� − ̂�1,3��Ĝ�3,2� = �̂0��1,2� , �8�

where Ĝ0
−1 is defined by

Ĝ0
−1�1,2� � − �̂0

�

��1
− �̂3K1���1,2� , �9�

with �̂0 as the 2�2 unit matrix, ̂ the self-energy, and
��1,2�����1−�2���r1−r2�. A proof of Eq. �8� is given in
Appendix A 3.

It follows from ̂= Ĝ0
−1− Ĝ−1 and the symmetry of Ĝ−1

that ̂ also obeys the relations of Eq. �6�. Let us write it as

̂�1,2� = 
 �1,2� ��1,2�

− �̄�1,2� − ̄�1,2�
� . �10�

It then follows that the elements satisfy ��1,2�
=�r2�1 ,r1�2�, ��1,2�=��2,1�, ̄�1,2�=�2,1�, and

�̄�1,2�=���r2�1 ,r1�2�.

B. Hugenholtz-Pines theorem

As shown in Appendix A 4, the Hugenholtz-Pines
theorem21 can be extended to inhomogeneous systems as

� d2�Ĝ0
−1�1,2� − ̂�1,2��
 
�2�

− 
̄�2�
� = 
0

0� . �11�

This is the condition for the excitation spectra to have a
gapless mode as compatible with Goldstone’s theorem.2,4 In
the homogeneous case of 
�1�=�n0 with n0 as the conden-
sate density, the first row of Eq. �11� in the Fourier space
reduces to the familiar Hugenholtz-Pines relation:21 �
=p=0−�p=0, where p��p , i�n� is the four momentum with
�n�2n�T as the Matsubara frequency �n=0,�1,�2, . . .�.
Note that Eq. �11� is given here in terms of the same operator
as the Dyson-Beliaev equation �8�; see the comment below
Eq. �39� for its relevance to Goldstone’s theorem. Equation
�11� can also be regarded as the generalized Gross-Pitaevskii
equation40,41 to incorporate the quasiparticle contribution
into the self-energies.

It is worth pointing out that our proof of Eq. �11� in Ap-
pendix A 4 has been carried out by using the gauge transfor-
mation relevant to the broken U�1� symmetry without mak-
ing any specific assumptions on the structure of the self-
energies. Especially, it has removed the implicit supposition
by Hugenholtz and Pines21 that the self-energies in con-
densed Bose systems also be proper in the conventional
sense.12

C. Interaction energy

It is shown in Appendix A 5 that the interaction energy
�Hint�, i.e., the grand-canonical average of Eq. �2b�, can be
expressed in terms of the self-energies as

�Hint� =
T

4
� d1� d2�2�1,2��
�2�
̄�1� − G�2,1+��

− �̄�1,2��
�2�
�1� − F�2,1��

− ��1,2��
̄�2�
̄�1� − F̄�2,1��� . �12�

This is one of the key relations indispensable below.

D. Luttinger-Ward functional

Luttinger and Ward12 gave an expression of the thermo-
dynamic potential ��−T ln Tr e−H/T for an interacting nor-
mal Fermi system as a functional of the self-energy . Their
consideration can be extended easily to the normal Bose sys-
tem of 
=0. It is more convenient to regard the resultant �
as a functional of G, which reads as

� = T Tr�ln�− G0
−1 + � + G� + � , �13�

with Tr AB��d1�d2A�1,2�B�2,1+� and

G0
−1�1,2� � −

�

��1
− K1���1,2� . �14�

The quantity � denotes contribution of all the skeleton dia-
grams in the simple perturbation expansion for � with the
replacement G0→G.12 Its functional derivative with respect
to G yields the self-energy  as
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�1,2� = − T−1 ��

�G�2,1�
. �15�

It hence follows from Dyson’s equation G= �G0
−1−�−1 that

� is stationary with respect to G as �� /�G�2,1�=0.
Luttinger and Ward also put Eq. �15� into an integral form

with the nth-order self-energy �n� in terms of the interaction.
To be explicit, �n� is defined as the contribution of all the
nth-order skeleton diagrams in the simple perturbation ex-
pansion for the proper self-energy with the replacement G0
→G.12 Noting that there are 2n−1 Green’s-function lines in
the diagrams of �n�, Eq. �15� can be integrated order by
order into12

� = − T�
n=1

�
1

2n
Tr �n�G . �16�

Comparing this expression with Eq. �12� of the normal state
�
=0, F=0�, we obtain a relation between the nth-order
terms as

��n� =
1

n
�Hint��n�. �17�

The factor 1 /n is due to the extra Hint present in the evalu-
ation of �Hint��n� compared with that of ��n�. Hence the rela-
tion will hold true generally in self-consistent perturbation
expansions beyond the normal phase.

E. De Dominicis-Martin theorem

Using a series of Legendre transformations, it was shown
by de Dominicis and Martin42 �see also Refs. 35 and 36� that
the thermodynamic potential � in the condensed phase can

be expressed as a functional ��T ,� ;G ,F , F̄ ,
 ,
̄� such that

��

�G�2,1�
=

��

�F̄�2,1�
= 0,

��

�
̄�1�
= 0. �18�

Thus, the exact thermodynamic potential is stationary with
respect to variations in both the condensate wave function
and Green’s functions. Equation �18� generalizes
�� /�G�2,1�=0 of the normal-state Luttinger-Ward func-
tional �Eq. �13�� to condensed Bose systems. However, no
explicit � has been known for BEC which satisfies Eq. �18�
via Eqs. �8� and �11� and also includes Eq. �13� as the limit

→0.

Following Eq. �13� for the normal state, we now express
� of the condensed phase as

� = − T� d1� d2
̄�1�G0
−1�1,2�
�2�

+
T

2
Tr�ln�− Ĝ0

−1 + ̂� + ̂Ĝ� + � , �19�

where G0
−1 and Ĝ0

−1 are given as Eqs. �14� and �9�, respec-
tively, and Tr is now defined by

Tr ̂Ĝ �� d1� d2 Tr
 �1,2� ��1,2�

− �̄�1,2� − ̄�1,2�
�

�
G�2,1+� F�2,1�

− F̄�2,1� − Ḡ�2,1−�
� . �20�

The subscript of 1− denotes an extra infinitesimal negative
constant in �1 to put the creation operator to the left for
equal-time averages, and the second Tr denotes the usual
trace in the matrix algebra. Equation �19� appropriately re-
duces to Eq. �13� as 
→0. Whereas the first two terms in
Eq. �19� remain finite even for the ideal Bose gas, � is made
up only of contribution due to the interaction. This is one of
the advantages for adopting expression �19�.

Once � is written as Eq. �19�, one can show by using Eq.

�8�, Eq. �11�, Ḡ�1,2�=G�2,1�, and ̄�1,2�=�2,1� that con-
dition �18� can be expressed equivalently with respect to �
as

�1,2� = − T−1 ��

�G�2,1�
, ��1,2� = 2T−1 ��

�F̄�2,1�
,

�21a�

T−1 ��

�
̄�1�
=� d2��1,2�
�2� − ��1,2�
̄�2�� . �21b�

These are direct generalizations of Eq. �15� for the normal
state into the condensed phase.

Now, our gapless �-derivable approximation denotes �i�
constructing � so as to reproduce Eq. �21� and �ii� determin-

ing Ĝ, 
, and ̂ self-consistently with Eqs. �8�, �11�, and
�21�. It will obey dynamical conservation laws10,31 as well as
Goldstone’s theorem,2,4 thereby enabling us to handle equi-
librium and nonequilibrium phenomena of BEC on an equal
footing with the Nambu-Goldstone boson.

It is worth pointing out that expression �19� becomes ex-
act when � satisfies Eq. �17� at each order up to n=� in the
self-consistent perturbation expansion. With Hint→�Hint in
Eq. �1�, the proof proceeds in exactly the same way as that of
the normal state12 as follows. First, we find with Eqs. �17�
and �18� that the corresponding expression of Eq. �19� obeys
the same first order differential equation ��� /��
= ��Hint�� /� as the defining one ���−T ln Tr e−�H0+�Hint�/T,
where �¯ �� denotes the grand-canonical average in terms of
H0+�Hint. Second, the two expressions yield the same initial
value ��=0. We hence arrive at the above conclusion. Thus,
the gapless �-derivable scheme obeying Eq. �17� also in-
cludes the exact theory as a limit.

F. Exact relations with �

We now present a couple of exact relations in terms of �
to be satisfied in the condensed phase. Let us substitute the
nth-order contribution of Eq. �12� into Eq. �17� and subse-
quently use Eq. �21a�. We thereby obtain
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2n��n� +� d1� d2� ���n�

�G�2,1�
�
�2�
̄�1� − G�2,1��

+
���n�

�F�2,1�
�
�2�
�1� − F�2,1��

+
���n�

�F̄�2,1�
�
̄�2�
̄�1� − F̄�2,1��� = 0. �22�

Next, substitution of Eq. �21a� into Eq. �21b� yields

��

�
̄�1�
+� d2
 ��

�G�2,1�

�2� + 2

��

�F̄�2,1�

̄�2�� = 0.

�23�

The above two equalities will play a crucial role below for
writing � down explicitly.

III. CONSTRUCTING �

One of the basic difficulties in developing the self-
consistent perturbation expansion for BEC may be attributed
to the absence of a definite concept of skeleton diagrams,
which were clear in normal systems,12 due to the appearance
of finite one-particle average 
�1�����1��. It brings an am-
biguity as to how to count the contribution with F and 

adequately in the renormalization process. Our approach here
is to determine the contribution to � inherent in BEC with
the exact relation of Eq. �22� or Eq. �23� so as to reproduce
the Luttinger-Ward functional for 
→0, thereby avoiding
the conceptual difficulty to define skeleton diagrams explic-
itly. The two relations will be shown to yield a unique result
at each order in the self-consistent perturbation expansion in
terms of the interaction.

To this end, we introduce the symmetrized vertex:8

��0��11�,22�� � V�r1 − r2����1 − �2����1,1����2,2��

+ ��1,2����2,1��� , �24�

satisfying ��0��11� ,22��=��0��22� ,11��=��0��1�1,2�2�
=��0��12� ,21��. It helps us to reduce relevant Feynman dia-
grams substantially at the expense of introducing some cum-
bersomeness in the calculation of numerical factors.8 Our
consideration below will be carried out in terms of topologi-

cally distinct diagrams, where G, F, and F̄ are expressed in
the same way as those of superconductivity,8 and ��0� is de-
noted by a filled circle. Following Popov,43 we also suppress

drawing symbols for 
 and 
̄ in those diagrams; they can be
recovered easily with the fact that Eq. �2b� originally con-
tains two pairs of creation and annihilation operators.

A. Definite procedure for �(n)

Consider the nth-order contribution. The procedure to
construct ��n� is summarized as �a�–�d� below. See Figs. 1
and 2 as explicit examples of relevant diagrams for n=1 and
2, respectively.

�a� Draw all the normal-state diagrams contributing to
��n�, i.e., those diagrams which appear in the Luttinger-Ward

functional.12 With each such diagram, associate the factor of
the normal state.

�b� Draw all the distinct diagrams obtained from those of
�a� by successively changing the directions of a pair of in-
coming and outgoing arrows at each vertex. This enumerates

all the processes where F or F̄ is relevant in place of G. With
each such diagram, associate an unknown coefficient.

�c1� Draw all the distinct diagrams obtained from those of
�a� and �b� by successively removing a Green’s-function line
so as to meet the condition that a further removal of any line
from each diagram would not break it into two unconnected
parts. The procedure incorporates all the processes where the
condensate wave function participates explicitly. The latter
condition guarantees that the self-energies obtained by Eq.
�21a� are composed of connected diagrams.

�c2� Associate an unknown coefficient with each such dia-
gram, except the one consisting only of a single vertex in the
first order, i.e., the rightmost diagram in Fig. 1, for which the
coefficient is easily identified to be T /4. Indeed, the latter
represents the term obtained from Eq. �2b� by replacing ev-
ery field operator by its expectation value, i.e., the conden-
sate wave function.

�d� Determine the unknown coefficients of �b� and �c� by
requiring that either Eq. �22� or Eq. �23� be satisfied.

It is worth pointing out that, with Eq. �21a�, the diagrams
of �c1� necessarily yields those self-energies which are sepa-

2 (b) c2b c1a(c) c1b(a) 1(c) (c)(1) (1) (1)

FIG. 1. Diagrams contributing to ��1�. Here �a�–�c� distinguish
three kinds of diagrams considered at different stages of the proce-
dure in Sec. III A, and numbers and unknown variables c�

�1� ��
=2b ,1a ,1b� denote relative weights of those diagrams. Each coef-
ficient should be multiplied by T /4 to obtain the absolute weight.

1(a) (b) c4b(2) (b) c4c(2)

(c) c3a(2) (c) c3b(2) (c) c3c(2) (c) c3d(2)

(c) c2a(2) (c) c2b(2) (c) c2c(2) (c) c2e(2)(c) c2d(2)

FIG. 2. Diagrams contributing to ��2�. Here �a�–�c� distinguish
three kinds of diagrams considered at different stages of the proce-
dure in Sec. III A, and the number 1 and unknown variables c�

�2�

��=4b , . . . ,2e� denote relative weights of those diagrams. Each co-
efficient should be multiplied by −T /8 to obtain the absolute
weight.
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rated into two parts by cutting a single line, i.e. those classi-
fied as “improper” in the conventional sense.12 According to
Eq. �12�, however, we surely need to consider this kind of
self-energy diagrams in the self-consistent perturbation ex-
pansion for BEC. It should also be mentioned that our proof
of Eq. �11� in Appendix A 4 is carried out without the im-
plicit supposition by Hugenholtz and Pines21 that the self-
energies be “proper” in the conventional sense.12 Thus, there
is nothing inconsistent on this point in our formulation.

B. Expression of �(1)

The first-order contribution to � is given by the diagrams
of Fig. 1. They can be expressed analytically as

��1� =
T

4
� d1� d1�� d2� d2���0��11�,22��

��2G�1,1��G�2,2�� + c2b
�1�F�1,2�F̄�1�,2��

+ c1a
�1�G�1,1��
�2�
̄�2�� + c1b

�1��F�1,2�
̄�1��
̄�2��

+ F̄�1�,2��
�1�
�2�� + 
̄�1��
̄�2��
�2�
�1�� ,

�25�

where c2b
�1�, c1a

�1�, and c1b
�1� are unknown coefficients.

We now require that Eq. �22� be satisfied. It turns out that
contribution of the first two diagrams in Fig. 1 vanishes in
the equation. This cancellation is characteristic of those dia-

grams with no condensate wave function and holds order by
order in Eq. �22�. Hence relevant to Eq. �22� in Fig. 1 are the
last three diagrams, which yield

4 + c1a
�1� = 0, c2b

�1� + c1b
�1� = 0, c1a

�1� + 2c1b
�1� + 2 = 0,

respectively. We hence obtain

c2b
�1� = − 1, c1a

�1� = − 4, c1b
�1� = 1. �26�

Thus, the coefficients c�
�1� have been determined uniquely.

Alternatively, we impose Eq. �23�. Terms in the resultant
equation can be expressed graphically by the last three dia-

grams of Fig. 1 with an extra symbol for the missing 
̄ at
each vertex. We obtain the same equations as above in terms
of c2b

�1�, c1a
�1�, and c1b

�1�. We hence arrive at Eq. �26� again.
It is worth pointing out that, except for the signs of F and

F̄ in the definition of Eq. �5�, functional �25� with coefficient
�26� is exactly identical to that of the conserving-gapless
mean-field theory30,31 developed earlier with a subtraction
procedure. Moreover, those signs have been shown not to
affect the physical quantities at all within the first order.31

Thus, the mean-field theory has been identified here as the
only self-consistent theory of the first order compatible with
exact relations �22� and �23�.

C. Expression of �(2)

The second-order contribution to � is given by the dia-
grams of Fig. 2. They are expressed analytically as

��2� = −
T

8
� d1¯� d4���0��11�,22����0��33�,44���G�2,3��G�3,2��G�1,4��G�4,1�� + c4b

�2�F̄�2�,3��F�2,3�G�1,4��G�4,1��

+ c4c
�2�F̄�2�,3��F�2,3�F̄�1�,4��F�1,4� + c3a

�2�G�2,3��G�3,2��G�1,4��
�4�
̄�1�� + c3b
�2��F̄�2�,3��
�2�
�3�

+ F�2,3�
̄�2��
̄�3���G�1,4��G�4,1�� + c3c
�2�F̄�2�,3��F�2,3�G�1,4��
�4�
̄�1�� + c3d

�2��F̄�2�,3��
�2�
�3�

+ F�2,3�
̄�2��
̄�3���F̄�1�,4��F�1,4� + c2a
�2�G�2,3��G�3,2��
�1�
̄�4��
�4�
̄�1��

+ c2b
�2�G�2,3��
�3�
̄�2��G�1,4��
�4�
̄�1�� + c2c

�2��F̄�2�,3��
�2�
�3� + F�2,3�
̄�2��
̄�3���G�1,4��
�4�
̄�1��

+ c2d
�2�F̄�2�,3��F�2,3�
�1�
̄�4��
�4�
̄�1�� + c2e

�2��F�2,3�
̄�3��
̄�2��F�1,4�
̄�4��
̄�1��

+ F̄�2�,3��
�3�
�2�F̄�1�,4��
�4�
�1��� . �27�

Here the first term in the curly brackets corresponds to the
normal-state process, whereas the others with unknown pref-
actors c�

�2� ��=4b , . . . ,2e� are characteristic of BEC.
We now impose Eq. �22� on the unknown coefficients. It

yields eleven algebraic equations originating from the pref-
actors of �i� the diagrams in the second and third rows of Fig.
2 and �ii� two kinds of diagrams in Fig. 3. They are given by

0 = c3a
�2� + 4 = c3b

�2� + c4b
�2� = c3c

�2� + 2c4b
�2� = c3d

�2� + 2c4c
�2�,

�28a�

0 = c2a
�2� + c3a

�2� + c3b
�2� = 2c2b

�2� + c3a
�2� = 2c2c

�2� + c3c
�2� + 2c3b

�2� = 2c2d
�2�

+ c3c
�2� + 4c3d

�2� = 2c2e
�2� + c3d

�2�, �28b�

0 = c2a
�2� + c2b

�2� + c2c
�2� = c2c

�2� + c2d
�2� + 2c2e

�2�, �28c�

respectively. Solving them, we obtain

c4b
�2� = − 2, c4c

�2� = 1,

c3a
�2� = − 4, c3b

�2� = 2, c3c
�2� = 4, c3d

�2� = − 2,
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c2a
�2� = c2b

�2� = 2, c2c
�2� = − 4, c2d

�2� = 2, c2e
�2� = 1. �29�

Thus, the coefficients c�
�2� have been determined uniquely

with Eq. �22�.
We may alternatively require that Eq. �23� be satisfied.

Terms which appear in the calculation of Eq. �23� can also be
expressed graphically. They are obtained from the diagrams
in the second and third row of Fig. 2 and those of Fig. 3 by

adding a broken-line arrow for the missing 
̄ at a vertex in
all possible ways. The insertion is topologically unique for
most of the diagrams, e.g., those in the second row of Fig. 2;
in this case the corresponding equation for each diagram
turns out to be the same as that in Eq. �28�. There are three
exceptions. The first of them corresponds to the pair of dia-
grams with the coefficient c2c

�2� in Fig. 2, which yields three
distinct diagrams of Fig. 4. Thus, 2c2c

�2�+c3c
�2�+2c3b

�2�=0 in Eq.
�28b� is now replaced by the three equations:

0 = c2c
�2� + 2c3b

�2� = 2c2c
�2� + 2c3b

�2� + c3c
�2� = c2c

�2� + c3c
�2�. �30a�

The others are two kinds of diagrams in Fig. 3, for which
there are four different ways to add a broken-line arrow. The
corresponding equations are given by

0 = 2c2a
�2� + c2c

�2� = 2c2b
�2� + c2c

�2� = c2c
�2� + 2c2d

�2� = c2c
�2� + 4c2e

�2�,

�30b�

which replace Eq. �28c�. Despite the increase in the number
of equations, the solution is still given by Eq. �29�, as seen
easily by substituting it into Eq. �30�. Thus, functional �27�
with Eq. �29� satisfies the Hugenholtz-Pines relation �23� be-
sides exact relation �22� for the interaction energy.

D. Constructing �(3)

The same procedure has been used to obtain the expres-
sion of the third-order contribution ��3�. The relevant dia-
grams are given in Fig. 5 without arrows, and Fig. 6 shows
additional diagrams necessary for the evaluation of Eq. �22�
or Eq. �23�. The two relations have been checked to yield a
unique result, which is summarized in Appendix B.

IV. EXPRESSIONS OF ENTROPY
AND SUPERFLUID DENSITY

The analysis of the preceding section has clarified that we
can generally express the thermodynamic potential of inter-
acting condensed bosons as Eq. �19�, and � can be con-
structed order by order uniquely so as to satisfy both of exact
relations �22� and �23�. The fact implies that Eq. �19� be-
comes exact when terms up to n=� are retained in �. Using
Eq. �19�, we now derive formally exact expressions of en-
tropy and superfluid density in terms of Green’s function �5�,
which are also valid within the gapless �-derivable approxi-

mation. We set 
�1�→
�r1� and 
̄�1�→
��r1� below as
they have no explicit temperature dependence.

A. Entropy

Let us expand every quantity in Eq. �19� as

Ĝ�1,2� = T �
n=−�

�

Ĝ�r1,r2;zn�e−zn��1−�2�, �31�

for example, with zn�2n�iT. We next transform the sum-
mation over zn into an integration on the complex z plane by
using the Bose distribution function:8,12

f̂�z� = 
 f�z� 0

0 − f�− z� �, f�z� �
1

ez/T − 1
. �32�

The signs of �f��z� correspond to the subscripts in Eq.
�20�; with this choice we can deform the original integration
contour encircling the imaginary axis down around the real
axis.8,12 Note −f�−z�=1+ f�z�. Equation �19� is thereby trans-
formed into

� =� d3r1

��r1�K1
�r1� − P�

−�

� d�

2�
Tr f̂����Im ln�K̂

+ ̂��−� − �−�̂0� + Im ̂��−�Re Ĝ��−�

+ Re ̂��−�Im Ĝ��−�� + � . �33�

Here P denotes Cauchy principal value to remove the pole
�=0 of f��� which belongs to �zn�n, Tr is defined as Eq. �20�
without � integrals, K̂� K̂�r1 ,r2� and Ĝ��−�= Ĝ�r1 ,r2 ;�−�
with K̂�r1 ,r2�� �̂3K1��r1−r2� and �−��+ i0−, and

Re Ĝ��−� and Im Ĝ��−� are defined by

FIG. 3. Two kinds of extra diagrams which appear in the calcu-
lation of Eq. �22� for n=2.

FIG. 4. Three distinct diagrams necessary in the calculation of
Eq. �23� for n=2. They are obtained from the pair of diagrams with
the coefficient c2c

�2� in Fig. 2 by adding a broken-line arrow for the

missing 
̄ at a single vertex.

FIG. 5. Distinct diagrams for ��3� without arrows.

FIG. 6. Two additional diagrams to calculate Eq. �22� or Eq.
�23� for n=3.
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Re Ĝ��−� �
Ĝ��−� + Ĝ��+�

2
, �34a�

Im Ĝ��−� �
Ĝ��−� − Ĝ��+�

2i
. �34b�

We can also express � in terms of f��� by using the Leh-

mann representation of Ĝ.8 Just like case of the normal
system,44,45 inspection of the self-consistent perturbation se-

ries obtained in Sec. III indicates that ��n� and ̂�n� �n
=1,2 ,3� satisfy

��

�f���
=

1

2�
Tr Re ̂��−�Im Ĝ��−� , �35�

order by order, which is apparently connected with Eq. �21a�.
We will proceed by assuming that Eq. �35� holds generally.

We now calculate entropy S=−��� /�T�. Noting Eq. �18�,
the differentiation needs to be carried out only with respect
to the explicit T dependence in f .44 It then follows from Eq.
�35� that −�� /�T exactly cancels the contribution of the
third term in the curly bracket of Eq. �33�. We also use the
relation �f /�T=−�� /�� with

���� � − f���ln�f���� − f�− ��ln�f�− ��� , �36�

to perform a partial integration over �. We thereby obtain

S = P�
−�

� d�

2�
����Tr
�
�̂0 −

� Re ̂��−�
��

�Im Ĝ��−�

+ Im ̂��−�
� Re Ĝ��−�

��
�� . �37�

The expression is a direct extension of the normal-state
entropy44,45 to the system of interacting bosons with broken
U�1� symmetry.

Adopting the mean-field approximation without the � de-

pendence in the self-energy ̂, Eq. �37� reduces to a well-
known expression. To see this, let us diagonalize the operator

Ĥ� K̂+ ̂ in Ĝ−1 with the Bogoliubov-de Gennes equation:31

� Ĥ�r1,r2�û��r2�d3r2 = û��r1��̂3E�, �38�

where E��0, and the eigenfunction û��r� can be put into the
expression:

û��r� � 
 u��r� v��r�
− v�

��r� − u�
��r� � , �39�

with �d3r�̂3û��
† �r��̂3û��r�= �̂0����. Note that Eq. �11� for the

condensate wave function is obtained from Eq. �38� as the
limit of u�, v�→
, and E�→0; hence there is no energy gap
in the excitation energy in accordance with Goldstone’s theo-

rem. Green’s function is then transformed into Ĝ�r1 ,r2 ;�−�
=��û��r1���−�̂0−E��̂3�−1�̂3û�

†�r2��̂3. Substituting it into Eq.
�37� and using the orthonormality of û�, we arrive at S
=���−f� ln f�+ �1+ f��ln�1+ f��� with f�= f�E��.

The above consideration with the mean-field approxima-

tion has exemplified that the structure of Ĝ��−� near �=0 is
directly relevant to the entropy of BEC at low temperatures.
It also tells us that the Bogoliubov mode will be connected
continuously to the quasiparticle mode which dominates the
low-temperature thermal properties of superfluid 4He.46 Fur-
ther investigations seem required about the general proper-
ties of the self-energy near �=0 to elucidate this connection.

B. Superfluid density

We next derive an expression of the superfluid density.
Consider a homogeneous BEC where the condensate wave
function is given by 
�r1�=�n0eiq·r1 with n0 as the conden-
sate density. In this case, the off-diagonal self-energy ��1,2�
acquires the spatial dependence eiq·�r1+r2� in terms of the
center-of-mass coordinate r1+r2. This may be realized by
looking at the condensate contribution to ��1,2� which is
given by V�r1−r2����1−�2�
�r1�
�r2�. It hence follows that
Green’s function can be expanded in terms of the basis func-
tion:

�̂p�r1� �
eip·r1

�V

eiq·r1 0

0 e−iq·r1
� , �40�

with V as the volume of the system, as

Ĝ�1,2� = T�
np
�̂p�r1�Ĝp�zn��̂p

��r2�e−zn��1−�2�, �41�

with zn=2n�iT. The momentum density �p� is calculated by
operating −i�1 to �T���1��†�2��=
�r1�
��r2�−G�1,2� and

setting 2=1+ subsequently. Noting Ḡ�1,2�=G�2,1� in Eq.
�5�, the result can also be expressed in terms of the Nambu

matrix Ĝp�zn� in Eq. �41� as

�p� = n0q −
T

2V�
np

Tr
p + q 0

0 − p + q
��̂3Ĝp�zn�1̂�zn�

= nq −
T

2V�
np

p Tr Ĝp�zn�1̂�zn� . �42�

Here 1̂�zn� is defined by

1̂�zn� � 
ezn0+ 0

0 ezn0−
� , �43�

and we have used n0−G�1,1+�=n with n denoting the par-

ticle density. We further express the term with Ĝp�zn� in Eq.
�42� as

�
p

p Tr Ĝp�zn�1̂�zn� = �
p

p Tr 1̂�zn�
�

�zn
ln�− Ĝp

−1�zn��

+ �
p

p Tr 1̂�zn�
�̂p�zn�

�zn
Ĝp�zn� .
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It then turns out that the second term on the right-hand side
vanishes as can be seen by repeating the argument from Eq.
�3.18� to Eq. �3.23� in Ref. 47 based on the momentum con-
servation of � at each interaction for homogeneous systems.
On the other hand, the first term can be transformed with the
Bose distribution function f into an integration just below
and above the real axis on the complex z plane. Carrying out
a partial integration subsequently, we obtain an expression of
the superfluid density tensor �ij

�s��m���pi� /�qj�q=0 as

�ij
�s� = mn�ij −

m

V �
p

P�
−�

� d�

2�

� f���
��

�pi
�

�qj
Tr Im ln�− Ĝp

−1��−���q=0. �44�

This expression manifestly tells us that the structure of

Ĝp��−� near �=0 is directly relevant to the superfluid density.
Without � and p dependences in the self-energy, for ex-
ample, the formula reproduces the expression given by
Fetter48 for the weakly interacting condensed Bose gas. It is
also worth pointing out that Eq. �44� is identical in form with
that of Fermi superfluids47 including the BCS-BEC crossover
regime.49

V. REAL-TIME EQUATIONS OF MOTION

The formulation of Secs. II and III can be extended
straightforwardly to describe nonequilibrium dynamical evo-
lutions of BEC. Formally, we only need to replace the inte-
gration contour 0	�	T−1 by the closed time-path
contour.15,16 We here follow Keldysh14,16 to distinguish the
forward and backward branches so that every time integra-
tion is limited to −�� t��. The present transformation
from equilibrium to nonequilibrium is a direct extension of
the normal-state consideration.45

Let us replace 1→1 j ��r1 , t1
j � and �1→ it1

j in the Heisen-
berg operators of Eq. �3�, where superscript j=1,2 distin-
guishes the forward �j=1� and backward �j=2� branches.
Using them, we next define Green’s function in the Nambu
space by

Ĝij�1,2� � − i	TC
��1i�

�̄�1i�
���̄�2 j���2 j����̂3

� 
 Gij�1,2� Fij�1,2�

− F̄ij�1,2� − Ḡij�1,2�
� , �45�

with TC as the generalized time-ordering operator.14,16 The
elements obey Gij

� �1,2�=−G3−j,3−i�2,1�, Fij�1,2�=Fji�2,1�,
F̄ij�1,2�=−F3−j,3−i

� �2,1�, and Ḡij�1,2�=Gji�2,1�. The self-

energy ̂ij�1,2� is defined similarly as Eq. �10� with the ad-
ditional subscripts ij. We next introduce the 4�4 matrices

�distinguished with ˇ on top�:

Ǧ�1,2� � 
Ĝ11�1,2� Ĝ12�1,2�

Ĝ21�1,2� Ĝ22�1,2�
� , �46a�

Ǧ0
−1�1,2� � 
Ĝ0

−1�1,2� 0̂

0̂ − Ĝ0
−1�1,2�

� , �46b�

�̌0 �
�̂0 0̂

0̂ �̂0
�, �̌3 �
�̂0 0̂

0̂ − �̂0
� , �46c�

where Ĝ0
−1�1,2� is given by Eq. �9� with � /��1→−i� /�t1.

The self-energy matrix ̌ is defined in the same way as Eq.
�46a�. Now, the Dyson-Beliaev equation reads

� d3�Ǧ0
−1�1,3� − �̌3̌�1,3��̌3�Ǧ�3,2� = ��1,2��̌0, �47�

where two �̌3’s originate from the path inversion for j=2.45

Also, Eq. �11� for the condensate wave function is replaced
by

� d2
Ĝ0
−1�1,2� − �

j=1

2

̂1j�1,2��− 1� j−1�
 
�2�

− 
̄�2�
� = 
0

0� ,

�48�

where we have incorporated 
�1��
�11�=
�12�. Note


̄�1�=
��1� here.
Green’s function in Eq. �45� contains an extra factor i

compared with Eq. �5�. Taking this fact into account, the
real-time functional ��n� is obtained from the equilibrium
one of Sec. III with the following modifications: �i� add
branch indices to Green’s function and the vertex �Eq. �24��
as Ĝ→ Ĝij and

�ii�,j j�
�0� �11�,22�� � �− 1� j−1�ij�ii�� j j�V�r1 − r2���t1 − t2�

����1,1����2,2�� + ��1,2����2,1��� ,

�49�

respectively, where the factor �−1� j−1 is due to the path in-
version for j=2; �ii� include summations over the branch
indices; �iii� multiply each term by im/2, where m is the num-
ber of condensate wave functions in the relevant term; �iv�
multiply the resultant expression by �−1�n−1in /T. In steps �iii�
and �iv�, we have removed the factor −T in equilibrium �
originating from �=−T ln Tr e−H/T, and also considered the
path change �1→ it1

j to reproduce the overall factor �−i�n in
the nth-order perturbation.

Thus, Eq. �25� is now replaced by

��1� =
i

4 �
ii�j j�

� d1� d1�� d2� d2��ii�,j j�
�0� �11�,22��

��2Gii��1,1��Gjj��2,2�� + c2b
�1�Fij�1,2�F̄i�j��1�,2��

+ ic1a
�1�Gii��1,1��
 j�2�
̄ j��2�� + ic1b

�1�

��Fij�1,2�
̄i��1��
̄ j��2�� + F̄i�j��1�,2��
i�1�
 j�2��

+ i2
̄i��1��
̄ j��2��
 j�2�
i�1�� , �50�

where 
i�1��
�1i�, and c�
�1�s are given as Eq. �26�.

Real-time functionals ��2� and ��3� can be constructed
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similarly from Eqs. �27� and �B1�, respectively, with
the coefficients of Eqs. �29� and �B5�. Using

Gij
� �1,2�=−G3−j3−i�2,1�, F̄ij�1,2�=−F3−j3−i

� �2,1�, and

�ii�,j j�
�0�� �11� ,22��=−�3−i3−i�,3−j3−j�

�0� �11� ,22��, one can show

��n��=��n�.
Accordingly, Eq. �21a� for the self-energies are modified

into

ij�1,2� = �− 1�i+j ��

�Gji�2,1�
, �51a�

�ij�1,2� = − 2�− 1�i+j ��

�F̄ji�2,1�
, �51b�

where the factor �−1�i+j is due to the two �̌3’s in Eq. �47�.
It follows from ��n��=��n� and the symmetries of Ǧ

that ij
� �1,2�=−3−j,3−i�2,1�, �ij�1,2�=� ji�2,1�, �̄ij�1,2�

=−�3−j,3−i
� �2,1�, and ̄ij�1,2�= ji�2,1�. The functional also

satisfies

i
��

�
̄i�1�
= �

j

�− 1�i+j� d2�ij�1,2�
 j�2� − �ij�1,2�
̄ j�2�� ,

�52�

which corresponds to Eq. �21b�.
Equations �47�, �48�, and �51� form self-consistent equa-

tions for nonequilibrium time evolutions of BEC satisfying
conservation laws and Goldstone’s theorem simultaneously.
Approximating � by ��1�+��2� yields a nonvanishing colli-
sion integral, for example. Using it, we can describe thermal-
ization of weakly interacting BEC microscopically, i.e., a
topic which seems not to have been clarified sufficiently.
See, e.g., a recent book by Griffin, Nikuni, and Zaremba19

for the present status on this issue.

VI. SUMMARY

We have developed a self-consistent perturbation expan-
sion for BEC with broken U�1� symmetry so as to obey
Goldstone’s theorem and dynamical conservation laws si-
multaneously. First, the Luttinger-Ward thermodynamic
functional for the normal state12 has been extended to a sys-
tem of interacting condensed bosons as Eq. �19�. Next, we
have presented a procedure to construct � in the functional
order by order with exact relations �22� and �23� in Sec.
III A. It has been shown subsequently up to the third order of
the self-consistent perturbation expansion that both of the
relations yield a unique identical result at each order as Eq.
�25� with Eq. �26�, Eq. �27� with Eq. �29�, and Eq. �B1� with
Eq. �B5�. This fact implies that the expansion converges to
the exact thermodynamic potential when infinite terms are
retained in �. Using Eq. �19�, we have also derived useful
expressions for the entropy and superfluid density in terms of
Green’s function as Eqs. �37� and �44�, respectively. Finally,
we have derived a set of real-time dynamical equations for
BEC as Eqs. �47�, �48�, and �51�.

An expansion scheme like the present one may have been
anticipated since the work of de Dominicis and Martin in
196442 to prove the existence of the functional satisfying Eq.
�18�. However, no explicit expression for the functional
seems to have been known to date. As already noted in In-
troduction, one of the advantages of the present expansion
scheme over the simple perturbation expansion lies in its
ability to describe nonequilibrium phenomena. Another point
to be mentioned is that it incorporates effects of the anoma-
lous Green’s function F�1,2�= �T���1���2�� more efficiently
than the simple perturbation expansion.8 This fact may be
realized by noting that F�1,2� becomes finite with at least a
single interaction line in the latter scheme. Thus, nth-order

terms with F or F̄ in the present expansion contain effects
which show up only after the �n+1�th order in the simple
perturbation expansion.

We are planning to apply the present formalism to a wide
range of systems/phenomena in BEC to elucidate their prop-
erties microscopically. It also remains to be performed to
clarify two-particle correlations within the present formal-
ism.

APPENDIX A: DERIVATION OF EQS. (8), (11), and (12)

Following the procedure sketched by Hohenberg and
Martin,23 we here derive the Dyson-Beliaev Eq. �8� and the
Hugenholtz-Pines relation �11� for general inhomogeneous
systems so as to be compatible with our definition �Eq. �5��
of Green’s function. We also prove expression �12� for the
interaction energy.

1. Time evolution operator

Let us introduce the external perturbation:23,35,42

Hext��1� � � d3r1��†�r1��ext�1� + ��r1��ext
� �1�� , �A1�

where �ext�1� is periodic in �1 with the period T−1. The total
Hamiltonian in this Appendix is given as a sum of Eqs. �1�
and �A1� by

H��1� � H + Hext��1� . �A2�

The extra term Hext serves as a convenient tool to derive
various formal relations. The limit �ext→0 will be taken
once all the necessary formulas are obtained.

We next define the time evolution operator in terms of H
by

U��,�0� � 1 + �
n=1

�

�− 1�n�
�0

�

d�n¯�
�0

�2

d�1H��n� ¯ H��1�

= �T� exp
− �
�0

�

d�1H��1�� : � � �0

T�
a exp
− �

�0

�

d�1H��1�� : � � �0
� , �A3�
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where T�
a is the anti-time-ordering operator. Note U�� ,�0�

→e−��−�0�H as �ext→0. This operator U�� ,�0� obeys

dU��,�0�
d�

= − H���U��,�0� , �A4a�

dU��,�0�
d�0

= U��,�0�H��0� . �A4b�

It also satisfies U��0 ,�0�=1 and

U��,�1�U��1,�0� = U��,�0� . �A5�

Equation �A5� is proved as follows. We see easily that

Ũ�� ,�0��U�� ,�1�U��1 ,�0� obeys the same first-order differ-
ential equation with respect to � as U�� ,�0�. We also notice
that the initial values at �=�1 are the same between the two

operators, i.e., Ũ��1 ,�0�=U��1 ,�0�. We hence conclude Eq.
�A5�. Note especially that U−1�� ,�0�=U��0 ,�� as can be seen
easily by setting �0=� in Eq. �A5�.

2. Equations of motion

We now introduce the Heisenberg operators:

� ��1� � U−1��1���r1�U��1�

�̄�1� � U−1��1��†�r1�U��1� ,
� �A6�

where U��1��U��1 ,0� and U−1��1��U�0,�1� with 0	�1
	T−1. Differentiating them with respect to �1 and using Eq.
�A4�, we obtain

−
�

��1
− K1���1� = �ext�1� +� d1�V̄�1,1���̄�1����1����1� ,

�A7a�

 �

��1
− K1��̄�1� = �ext

� �1� +� d1�V̄�1,1���̄�1��̄�1����1�� ,

�A7b�

with V̄�1,1������1−�1��V�r1−r1��.
Let us define the expectation value of an arbitrary opera-

tor O�1��U−1��1�O�r1�U��1� by

�O�1�� �
Tr T�U�T −1�O�1�

Tr U�T −1�
, �A8�

which for �ext→0 reduces to the grand canonical average
with respect to H. We then realize from Eq. �A7� that the
quantities


�1� � ���1��, 
̄�1� � ��̄�1�� , �A9�

obey the equations of motion:

−
�

��1
− K1�
�1� = �ext�1� + ��1� , �A10a�

 �

��1
− K1�
̄�1� = �ext

� �1� + �̄�1� , �A10b�

with

��1� � � d1�V̄�1,1����̄�1����1����1�� , �A11a�

�̄�1� � � d1�V̄�1,1����̄�1��̄�1����1��� . �A11b�

3. Dyson-Beliaev equation

To derive Eq. �8�, we first differentiate 
�1� in Eq. �A9�
with respect to �ext�2�. Using definition �A8�, one can easily
show

�
�1�
��ext�2�

= − �T���1��̄�2�� + 
�1�
̄�2� = G�1,2� ,

where G�1,2� is defined by Eq. �5� with definition �A8� for
the expectation value. Similar calculations lead to

�
�1�
��ext�2�

= G�1,2�,
�
�1�
��ext

� �2�
= − F�1,2� , �A12a�

�
̄�1�
��ext�2�

= − F̄�1,2�,
�
̄�1�
��ext

� �2�
= Ḡ�1,2� . �A12b�

We next introduce the self-energies by

�1,2� �
���1�
�
�2�

, ��1,2� �
���1�

�
̄�2�
, �A13a�

�̄�1,2� �
��̄�1�
�
�2�

, ̄�1,2� �
��̄�1�

�
̄�2�
. �A13b�

It then follows that ���1� /��ext�2�, etc., can be expressed as

���1�
��ext�2�

=� d3
 ���1�
�
�3�

�
�3�
��ext�2�

+
���1�

�
̄�3�

�
̄�3�
��ext�2��

=� d3��1,3�G�3,2� − ��1,3�F̄�3,2�� , �A14a�

���1�
��ext

� �2�
=� d3�− �1,3�F�3,2� + ��1,3�Ḡ�3,2�� ,

�A14b�
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��̄�1�
��ext�2�

=� d3��̄�1,3�G�3,2� − ̄�1,3�F̄�3,2�� ,

�A14c�

��̄�1�
��ext

� �2�
=� d3�− �̄�1,3�F�3,2� + ̄�1,3�Ḡ�3,2�� .

�A14d�

With these preliminaries, we now differentiate Eq. �A10�
with respect to �ext�2� or �ext

� �2� and set �ext=0 subse-
quently. Using Eqs. �A12� and �A14�, one may see easily that
the resultant four equations of motion can be written com-
pactly as Eq. �8�.

4. Hugenholtz-Pines relation

Equation �11� can be regarded as Goldstone’s theorem2,4

for the broken U�1� symmetry. To derive it, we consider the
gauge transformation:

�ext�1� → ei��ext�1�, ��r1� → ei���r1� , �A15�

where � is constant. This brings first-order changes in vari-
ous quantities as ��ext�1�= i��ext�1�, ��ext

� �1�=−i��ext
� �1�,

�
�1�= i�
�1�, and �
̄�1�=−i�
̄��1�. Collecting terms of
first order in Eq. �A10�, we obtain

0 = −
�

��1
− K1��
�1� − ��ext�1� − ���1�

= i��−
�

��1
− K1�
�1� − �ext�1�

−� d2��1,2�
�2� − ��1,2�
̄�2��� , �A16a�

0 = i��−
�

��1
+ K1�
̄�1� + �ext

� �1�

−� d2��̄�1,2�
�2� − ̄�1,2�
̄�2��� . �A16b�

respectively, where we have performed the same transforma-
tion for ���1� as Eq. �A14a�. Noting � is arbitrary and com-
paring Eqs. �A10� and �A16�, we obtain

��1� =� d2��1,2�
�2� − ��1,2�
̄�2�� , �A17a�

�̄�1� =� d2�− �̄�1,2�
�2� + ̄�1,2�
̄�2�� . �A17b�

We finally substitute Eq. �A17� into Eq. �A10� and set �ext
=0. We thereby arrive at Eq. �11�.

5. Interaction energy

To derive Eq. �12�, we multiply Eqs. �A7a� and �A7b�
with �ext=0 by �̄�1�� and ��1��, respectively, operate T�,

and take the thermodynamic average with Eq. �4� and ���
=0 in mind. Noting −�T�

���1�
��1

�̄�1���=− �
��1

�T���1��̄�1���
+��1,1�� and its conjugate, we can express the resultant
equations in terms of the diagonal elements of Eq. �5� as

− −
�

��1
− K1�G�1,1�� + ��1,1��

=� d2V̄�1,2��T��̄�2���2���1��̄�1��� , �A18a�

−  �

��1
− K1�Ḡ�1,1�� + ��1,1��

=� d2V̄�1,2��T��̄�1��̄�2���2���1��� . �A18b�

We then set 1�=1+ and 1�=1− in Eqs. �A18a� and �A18b�,
respectively. We also multiply Eqs. �A10a� and �A10b� with

�ext=0 by 
̄�1� and 
�1� from the left, respectively. Let us
add the four equations, perform an integration over 1, and
multiply the result by T /4 with Eq. �2b�, Eq. �4�, and

V̄�1,1������1−�1��V�r1−r1�� in mind. We thereby obtain

�Hint� =
T

4
� d1�
̄�1�−

�

��1
− K1�
�1�

+ 
�1� �

��1
− K1�
̄�1�

+ 
− −
�

��1
− K1�G�1,1�� + ��1,1���

1�=1+

+ 
−  �

��1
− K1�Ḡ�1,1�� + ��1,1���

1�=1−

� .

�A19�

We subsequently express the right-hand side of Eq. �A19� in
terms of the self-energies by using Eq. �8�, Eq. �11�,
Ḡ�1,2�=G�2,1�, and ̄�1,2�=�2,1�. Noting that the sub-
script in G�1−,2� is effective only for �2=�1 where
G�1−,2�=G�1,2+�, we arrive at Eq. �12�.

APPENDIX B: EXPRESSION OF �(3)

The basic diagrams for ��3� are given in Fig. 5. Inserting
arrows into them in all possible ways, we obtain 81 distinct
diagrams. The corresponding ��3� may be expressed com-
pactly as
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��3� =
T

24
Tr�4ḠG��0�ḠG��0�ḠG��0� + GG��0�GG��0�GG��0� + c6c

�3�F̄F��0�ḠG��0�ḠG��0� + c6d
�3�F̄G��0�FG��0�ḠG��0�

+ c6e
�3�FG��0�F̄G��0�GG��0� + c6f

�3�F̄F��0�F̄F��0�ḠG��0� + c6g
�3�F̄F��0�F̄G��0�FG��0� + c6h

�3�FF��0�F̄F̄��0�GG��0�

+ c6i
�3��FF��0�F̄Ḡ��0�F̄G��0� + c.c.� + c6j

�3�F̄F��0�F̄F��0�F̄F��0� + c5a
�3�ḡG��0�ḠG��0�ḠG��0� + c5b

�3�gG��0�GG��0�GG��0�

+ c5c
�3�� f̄F + c.c.���0�ḠG��0�ḠG��0� + c5d

�3�� f̄G��0�FG��0�ḠG��0� + c.c.� + c5e
�3��FG��0� f̄G��0�GG��0� + c.c.�

+ c5f
�3�F̄F��0�ḠG��0��ḡG + c.c.���0�+ c5g

�3�F̄G��0�FG��0�ḡG��0� + c5h
�3�F̄G��0�FG��0�Ḡg��0�

+ c5i
�3��F̄g��0�FG��0�ḠG��0� + c.c.� + c5j

�3�FG��0�F̄G��0�gG��0� + c5k
�3��FG��0�F̄g��0�GG��0� + c.c.�

+ c5�
�3�� f̄F + c.c.���0�F̄F��0�ḠG��0� + c5m

�3�� f̄F + c.c.���0�F̄G��0�FG��0� + c5n
�3��F̄F��0� f̄G��0�FG��0� + c.c.�

+ c5o
�3��FF��0� f̄ F̄��0�GG��0� + c.c.� + c5p

�3��fF��0�F̄Ḡ��0�F̄G��0� + c.c.� + c5q
�3��FF��0� f̄ Ḡ��0�F̄G��0� + c.c.�

+ c5r
�3�F̄F��0�F̄F��0�ḡG��0� + c5s

�3��F̄F��0�F̄g��0�FG��0� + c.c.� + c5t
�3�FF��0�F̄F̄��0�gG��0�

+ c5u
�3��FF��0�F̄Ḡ��0�F̄g��0� + c.c.� + c5v

�3�� f̄F + c.c.���0�F̄F��0�F̄F��0� + c4a
�3�ḡG��0�ḡG��0�ḠG��0�

+ c4b
�3�gG��0�gG��0�GG��0� + c4c

�3��ḡG��0�Ḡg��0�ḠG��0� + c.c.� + c4d
�3�� f̄F��0�Ḡg��0�ḠG��0� + c.c.�

+ c4e
�3�� f̄F��0�ḡG��0�ḠG��0� + c.c.� + c4f

�3�� f̄G��0�FG��0�ḡG��0� + c.c.� + c4g
�3�� f̄G��0�FG��0�Ḡg��0� + c.c.�

+ c4h
�3��Fg��0� f̄G��0�GG��0� + c.c.� + c4i

�3�F̄g��0�Fg��0�ḠG��0� + c4j
�3�F̄F��0�ḡG��0�ḡG��0�

+ c4k
�3��F̄F��0�Ḡg��0�ḡG��0� + c.c.� + c4�

�3��F̄G��0�Fg��0�ḡG��0� + c.c.� + c4m
�3��F̄g��0�FG��0�Ḡg��0� + c.c.�

+ c4n
�3��FG��0�F̄g��0�gG��0� + c.c.� + c4o

�3�Fg��0�F̄g��0�GG��0� + c4p
�3��FF��0� f̄ Ḡ��0� f̄G��0� + c.c.�

+ c4q
�3�� f̄F��0� f̄G��0�FG��0� + c.c.� + c4r

�3�� f̄F��0� f̄F��0�ḠG��0� + c.c.�+ c4s
�3�� f̄F��0�F̄F��0�ḡG��0� + c.c.�

+ c4t
�3�� f̄F��0�F̄F��0�Ḡg��0� + c.c.� + c4u

�3�� f̄F��0�F̄g��0�FG��0� + c.c.� + c4v
�3�� f̄F��0�F̄G��0�Fg��0� + c.c.�

+ c4w
�3��FF��0� f̄ F̄��0�gG��0� + c.c.� + c4x

�3�F̄F��0�F̄g��0�Fg��0� + c4y
�3�� f̄F��0� f̄F��0�F̄F��0� + c.c.�

+ c4z
�3��FF��0�F̄ḡ��0�F̄g��0� + c.c.� + c4�

�3�ḡg��0�ḠG��0�ḠG��0� + c4 
�3�gg��0�GG��0�GG��0�

+ c4!
�3�� f̄g��0�FG��0�ḠG��0� + c.c.�+ c4�

�3��FG��0� f̄g��0�GG��0� + c.c.� + c4�
�3�F̄F��0�ḠG��0�ḡg��0�

+ c4"
�3�F̄G��0�FG��0�ḡg��0� + c4�

�3�FG��0�F̄G��0�gg��0� + c4�
�3��f f��0�F̄Ḡ��0�F̄G��0� + c.c.�

+ c4�
�3��FF��0� f̄ f̄��0�GG��0� + c.c.� + c4�

�3��F̄F��0� f̄g��0�FG��0� + c.c.� + c4�
�3��FF��0� f̄ ḡ��0�F̄G��0� + c.c.�

+ c4�
�3�F̄F��0�F̄F��0�ḡg��0� + c4�

�3�FF��0�F̄F̄��0�gg��0� + c3a
�3�ḡG��0�ḡG��0�ḡG��0� + c3b

�3�ḡG��0�ḡG��0�Ḡg��0�

+ c3c
�3�� f̄F��0�Ḡg��0�ḡG��0� + c.c.� + c3d

�3�� f̄F��0�ḡG��0�Ḡg��0� + c.c.� + c3e
�3�� f̄F��0�ḡG��0�ḡG��0� + c.c.�

+ c3f
�3�F̄g��0�Fg��0�Ḡg��0� + c3g

�3�F̄g��0�Fg��0�ḡG��0� + c3h
�3�� f̄F��0� f̄G��0�Fg��0� + c.c.�

+ c3i
�3�� f̄F��0�F̄g��0�Fg��0� + c.c.� + c3j

�3��� f̄F��0� f̄F��0� f̄F��0� + c.c.�� . �B1�

Here ḠG etc. connect adjacent two vertices with appropriately chosen arguments as

Tr ḠG��0�ḠG��0�ḠG��0� =� d1¯� d6�Ḡ�1�,6�G�1,6����0��66�,55��Ḡ�5�,4�G�5,4����0��44�,33��

� Ḡ�3�,2�G�3,2����0��22�,11�� , �B2�

Tr FF��0�F̄Ḡ��0�F̄G��0� =� d1¯� d6�F�1,5�F�2,6���0��66�,55��F̄�6�,4��Ḡ�5�,4�

���0��44�,33��F̄�3�,1��G�3,2����0��22�,11�� , �B3�
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and g, ḡ, f , and f̄ are composed of 
 and 
̄ as

g�1,2� = 
�1�
̄�2�, ḡ�1,2� = 
̄�1�
�2�,

f�1,2� = 
�1�
�2�,

f̄�1,2� = 
̄�1�
̄�2� . �B4�

The unknown coefficients in Eq. �B1� have been determined
by Eq. �22�, using the diagrams of Figs. 5 and 6. The final
results are summarized as follows:

c6c
�3� = − 15, c6d

�3� = c6g
�3� = − c6e

�3� = 6, c6f
�3� = 12,

c6h
�3� = − c6i

�3� = 3, c6j
�3� = − 5, �B5a�

c5b
�3� = c5d

�3� = c5g
�3� = c5h

�3� = c5i
�3�

= c5m
�3� = c5n

�3� = c5o
�3� = c5s

�3� = c5t
�3� = − 6,

c5e
�3� = c5k

�3� = c5p
�3� = c5q

�3� = c5u
�3� = 6, c5a

�3� = c5l
�3� = c5r

�3� = − 24,

c5c
�3� = c5v

�3� = 15, c5f
�3� = 30, c5j

�3� = 12, �B5b�

c4a
�3� = c4i

�3� = c4s
�3� = − c4e

�3� = 30, c4c
�3� = c4r

�3� = c4"
�3� = 12,

c4d
�3� = c4j

�3� = c4x
�3� = − c4t

�3� = − 24,

c4b
�3� = c4g

�3� = c4l
�3� = c4o

�3� = c4q
�3� = c4v

�3� = c4w
�3� = c4!

�3� = c4�
�3� = 6,

c4k
�3� = c4y

�3� = − 15,

c4f
�3� = c4h

�3� = c4m
�3� = c4n

�3� = c4u
�3� = c4�

�3� = c4�
�3� = c4�

�3� = c4�
�3� = − 6,

c4p
�3� = c4z

�3� = c4�
�3� = c4�

�3� = c4�
�3� = − 3, c4 

�3� = c4�
�3� = c4�

�3� = 3,

�B5c�

c3a
�3� = − 10, c3b

�3� = c3f
�3� = c3g

�3� = c3h
�3� = − c3e

�3� = − 30,

c3c
�3� = c3d

�3� = c3i
�3� = 15, c3j

�3� = 5. �B5d�

It has been confirmed that Eq. �B1� with Eq. �B5� also sat-
isfies Eq. �23�.
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